Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.

Smith, P. P. K. \& Hyde, B. G. (1983). Acta Cryst. C39, 14981502.

Wang, N. (1977). Neues Jahrb. Mineral. Monatsh. H.11, 501-503.

Acta Cryst. (1990). C46, 531-534

Refinement of the Structure of Boulangerite, $\mathrm{Pb}_{\mathbf{5}} \mathbf{S b}_{\mathbf{4}} \mathbf{S}_{\mathbf{1 1}}$

By A. Skowron and I. D. Brown
Institute for Materials Research, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4M1

(Received 13 April 1989; accepted 11 July 1989)

Abstract

The structure of boulangerite, $\mathrm{Pb}_{5} \mathrm{Sb}_{4} \mathrm{~S}_{11}$, $M_{r}=1875 \cdot 7$, previously determined by Born \& Hellner [Am. Mineral. (1960), 45, 1266-1271] and by Petrova, Kuznetzov, Belokoneva, Simonov, Pobedimskaya \& Belov [Dokl. Akad. Nauk SSSR (1978), 242, 337-340] has been refined in the orthorhombic space group Pnam, $a=23 \cdot 490$ (5), $b=$ $21 \cdot 245$ (5), $c=4 \cdot 020$ (1) $\AA, V=2006 \AA^{3}, Z=4, D_{x}=$ $6.21 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu=$ $462 \cdot 8 \mathrm{~cm}^{-1}, F(000)=3160$, room temperature, $R=$ $0.077, w R=0.068$ for 2035 independent reflections. The crystal was prepared by annealing at 860 K in the presence of I_{2} in vacuum-sealed ampoules. The basic arrangement of atoms previously proposed is confirmed but the cation distribution is determined more accurately by site-occupancy refinement and by bond-valence analysis.

Introduction. Although the structure of boulangerite has been the object of several studies the cation distribution has not been reliably determined. Berry (1940) and Palache \& Berman (1942) determined the unit cell. Born \& Hellner (1960) proposed a structure for natural boulangerite using $h k 0$ and $h k 2$ Weissenberg photographs. The structure was later confirmed by Petrova, Kuznetzov, Belokoneva, Simonov, Pobedimskaya \& Belov (1978) on a synthetic crystal. Although the general features found in these studies were the same, we undertook an independent structure determination as part of a broader investigation into cation distributions in lead antimony sulfides in order to establish the correct cation distribution.

Experimental. Single crystals of $\mathrm{Pb}_{5} \mathrm{Sb}_{4} \mathrm{~S}_{11}$ were synthesized from elemental lead, antimony and sulfur of 'Specpure' grade, supplied by Johnson Matthey plc. Three samples were prepared by weighing the elements in proportions corresponding to $65,66,67$ $\mathrm{mol} \%$ of PbS . The samples were sealed in evacuated silica tubes, melted at 1150 K for 2 d and then
annealed at 873 K for 2 d . Considerable ingot separation occurred in all the ampoules. The separate portions of the ingots were then ground and pressed into seven 1 g pellets which were separately annealed for 3 d in evacuated silica tubes in a two-zone horizontal furnace after the addition of approximately 1 mg of I_{2} to each. At the end of the 20 cm ampoules where the pellets were placed the temperature was 860 K . The other end was kept at 880 K . Acicular crystals of $\mathrm{Pb}_{5} \mathrm{Sb}_{4} \mathrm{~S}_{11}$ and $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{~S}_{5}$ grew in various parts of the ampoules, most often near the cooler end. The structure of $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{~S}_{5}$ is reported by Skowron \& Brown (1990b). Good quality crystals of $\mathrm{Pb}_{5} \mathrm{Sb}_{4} \mathrm{~S}_{11}$ were found in the sample prepared from $66 \mathrm{~mol} \% \mathrm{PbS}$. A needle-shaped crystal, $0.15 \times 0.3 \times$ 0.6 mm , was mounted with the needle axis along the goniometer axis for the X-ray study.

The unit-cell parameters were refined from 15 well centered reflections in the range $19<2 \theta<26^{\circ}$ measured on a Syntex $P 2$ diffractometer using graphitemonochromated Mo $K \alpha$ radiation. Intensities of 3700 reflections were measured in the range $2 \theta<50^{\circ}$ and $0 \leq h \leq 27,0 \leq k \leq 25,-4 \leq l \leq 4$ with a $\theta / 2 \theta$ scan. Two standard reflections, $\overline{9} 61$ and $10, \overline{4}, 0$, measured every 50 reflections, varied by 1.4%. The systematic absences, $0 \mathrm{kl}: k+l=2 n+1 ; h 0 l: h=2 n+$ 1 , found using precession photographs indicate space groups Pnam or Pna2. The former was chosen and led to a satisfactory refinement. The absorption correction was based on ψ scans of 20 reflections (maximum correction 1.67 for the intensity of the $15,0,4$ reflection). The intensities were corrected for Lorentz and polarization effects. Equivalent reflections were averaged ($R_{\text {int }}=0.037$ before the absorption correction, $R_{\text {int }}=0.035$ after) to give 2035 unique reflections.

The initial atomic positions, found by direct methods using SHELXS86 (Sheldrick, 1986), were refined using SHELX76 (Sheldrick, 1976) by fullmatrix least squares (on F) with anisotropic atomic

[^0]displacement parameters for all the atoms and with mixed occupancies for the metal sites. Complex scattering factors for neutral atoms were taken from International Tables for X-ray Crystallography (1974). Intensities were weighted by $w=k /\left[\sigma^{2}\left(F_{o}\right)+\right.$ $g F_{o}{ }^{2}$], where k refined to $1.97, g$ was fixed at 0.0006 and $\sigma\left(F_{o}\right)$ was the uncertainty derived from the counting statistics. The Pb occupation numbers of sites 13,14 and 15 quickly refined to values close to 1.0 and were kept fixed at this value in the subsequent stages of the refinement. The refinement converged to $w R=0.066, R=0.075$ and $S=1.51$.
The program did not permit a constraint to be put on the total number of Pb or Sb atoms in the unit cell and the refined occupation numbers, shown in column 4 of Table 1, result in a formula of $\mathrm{Pb}_{4 \cdot 65} \mathrm{Sb}_{4 \cdot 35} \mathrm{~S}_{11}$ which is different from the expected electrically neutral formula $\mathrm{Pb}_{5} \mathrm{Sb}_{4} \mathrm{~S}_{11}$. In order to clarify this discrepancy we determined an independent set of occupation numbers using the bondvalence method described by Skowron \& Brown (1990a). In this we use the refined atomic parameters to calculate bond lengths (r) from which bond valences (s) were calculated using the equation
\[

$$
\begin{equation*}
s=\exp \left[\left(r_{0}-r\right) / 0 \cdot 37\right] \tag{1}
\end{equation*}
$$

\]

where $r_{0}=2.541 \AA$ for $\mathrm{Pb}-\mathrm{S}$ and $r_{0}=2.529 \AA$ for $\mathrm{Sb}-\mathrm{S}$ bonds. The valence analysis is presented in

Table 1. Percentage of Sb on cation sites in boulangerite

	 Hellner (1960)	Petrova et al. (1978)	X-ray	Bond valence
$M(1)$	100	50	76	70
$M(2)$	50	55	50	36
$M(3)$	50	40	41	38
$M(10)$	100	100	100	100
$M(11)$	100	100	100	100
$M(12)$	50	55	68	56
$M(13)$	0	0	0	0
$M(14)$	0	0	0	0
$M(15)$	0	0	0	0
Formula	$\mathrm{Pb}_{4 \cdot 5} \mathrm{Sb}_{4 \cdot 5} \mathrm{~S}_{11}$	$\mathrm{~Pb}_{5} \mathrm{Sb}_{4} \mathrm{~S}_{11}$	$\mathrm{~Pb}_{4 \cdot 65} \mathrm{Sb}_{4 \cdot 35} \mathrm{~S}_{11}$	$\mathrm{~Pb}_{5} \mathrm{Sb}_{4} \mathrm{~S}_{11}$

Table 2 and both the X-ray and valence occupation numbers are compared in Table 1.

Because the occupation numbers determined from the bond valences correspond to an electrically neutral crystal we consider these values to be more reliable. We used them as fixed parameters in SHELX 76 and refined all positional and atomic displacement parameters to obtain $w R=0.068, R=$ 0.077 and $S=1.56$. Maximum final shift/e.s.d. 0.053 , mean 0.014 , maximum density in the final difference Fourier map $3.5 \mathrm{e} \AA^{-3}$, minimum $-3.9 \mathrm{e} \AA^{-3}$. This refinement was used to generate the final atomic coordinates listed in Table 3. The interatomic distances are given in Table 4.*

Discussion. Our results confirm the structures reported by Born \& Hellner (1960) and by Petrova et al. (1978). The structure (Figs. 1 and 2) consists of two types of ribbon made of back-to-back squarepyramidal $(\mathrm{Pb}, \mathrm{Sb}) \mathrm{S}_{5}$ groups. The ribbons extend indefinitely in the \mathbf{c} direction, are one pyramid thick but have different widths. In the narrow ribbon the width equals three times the basal distance of the $(\mathrm{Pb}, \mathrm{Sb}) \mathrm{S}_{5}$ pyramid while in the wider ribbon it is six times this distance. The ribbons can be derived from the building unit, $\mathrm{Sb}_{4} \mathrm{~S}_{6}$, in stibnite (Bayliss \& Nowacki, 1972) by splitting it in the middle and inserting two PbS_{5} pyramids to form the narrower and eight to form the wider ribbon.
The stoichiometry can be determined by the total number of PbS units that have to be incorporated into the ribbons as:

$$
\begin{gathered}
{\left[\mathrm{Sb}_{2} \mathrm{~S}_{3}+(\mathrm{PbS})_{2}+\mathrm{Sb}_{2} \mathrm{~S}_{3}\right]+\left[\mathrm{Sb}_{2} \mathrm{~S}_{3}+(\mathrm{PbS})_{8}+\mathrm{Sb}_{2} \mathrm{~S}_{3}\right]} \\
\text { narrow ribbon } \\
\text { wide ribbon } \\
=2 \mathrm{~Pb}_{5} \mathrm{Sb}_{4} \mathrm{~S}_{11} .
\end{gathered}
$$

* Lists of observed and calculated structure factors and anisotropic atomic displacement parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52412 (44 pp). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Bond valences in boulangerite weighted according to X-ray occupation number

	$M(1)$	$M(2)$	M(3)	$M(10)$	$M(11)$	M(12)	$M(13)$	$M(14)$	$M(15)$	$\sum s$
\%Sb	76	50	41	100	100	68	0	0	0	
S(1)	0.79	-	0.57×2					0.15		-2.08
S(2)		$0.71+0.39 \times 2$	0.24×2							-1.97
S(3)	0.21×2	0.41×2	0.73							-1.97
S(4)	0.67×2								0.18×2	-1.70
S(10)				$1 \cdot 30$			$0 \cdot 18 \times 2$		0.32×2	-2.30
S(11)					$1 \cdot 18$			0.33×2	0.26×2	-2.36
S(12)						0.81	0.36×2	0.31×2		-2.15
S(13)						0.72×2	$0.20+0.13 \times 2$			-1.90
S(14)					0.46×2	0.15×2		0.57		-1.79
S(15)				0.24×2	0.36×2				$0 \cdot 40$	-1.60
S(16)				0.70×2			0.32	$0 \cdot 12$		-1.84
Σs	2.55	2.31	2.35	$3 \cdot 18$	$2 \cdot 82$	$2 \cdot 55$	1.86	$2 \cdot 12$	1.92	
V	2.76	$2 \cdot 50$	$2 \cdot 41$	$3 \cdot 00$	3.00	$2 \cdot 68$	2.00	2.00	2.00	

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters for boulangerite

$U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}\right) / 3$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$M(1)$	0.2675 (1)	0.5505 (1)	0.75	0.035 (1)
$M(2)$	0.4325 (1)	0.4580 (1)	0.75	0.037 (1)
$M(3)$	0.5975 (1)	$0 \cdot 3688$ (1)	0.75	0.031 (1)
$M(10)$	0.4625 (1)	0.2889 (1)	0.75	0.031 (1)
$M(11)$	0.2953 (1)	$0 \cdot 3820$ (1)	0.75	0.043 (2)
$M(12)$	0.1290 (1)	0.4855 (1)	0.75	0.032 (1)
$M(13)$	0.0021 (1)	$0 \cdot 6179$ (1)	0.75	0.03? (1)
$M(14)$	0.1602 (1)	$0 \cdot 3062$ (1)	0.25	0.021 (1)
$M(15)$	0.3229 (1)	0.2080 (1)	0.25	0.022 (1)
S(1)	0.6743 (3)	0.3454 (4)	0.25	0.022 (4)
S(2)	0.5166 (4)	0.4304 (4)	0.25	0.022 (4)
S(3)	0.3620 (3)	0.5147 (4)	0.25	0.021 (4)
S(4)	0.2057 (4)	0.5962 (4)	0.25	0.033 (5)
S(10)	0.4137 (3)	$0 \cdot 1876$ (3)	0.75	0.017 (4)
S(11)	0.2486 (3)	0.2780 (3)	0.75	0.015 (6)
S(12)	0.0878 (3)	0.3717 (3)	0.75	0.015 (4)
S(13)	0.0593 (4)	0.5126 (4)	0.25	0.033 (5)
S(14)	0.2180 (4)	0.4187 (4)	0.25	0.024 (5)
S(15)	0.3725 (4)	0.3319 (4)	0.25	0.030 (5)
S(16)	0.5293 (4)	0.2531 (4)	0.25	0.023 (4)

Table 4. Interatomic distances (\AA) less than $3.4 \AA$ in boulangerite

Narrow ribbon		Wide ribbon	
$M(1)-\mathrm{S}(1)$	$2 \cdot 602$ (8)	$M(10)-S(10)$	2.432 (7)
$\mathrm{S}(4) \times 2$	$2 \cdot 662$ (6)	$\mathrm{S}(16) \times 2$	$2 \cdot 661$ (5)
$\mathrm{S}(3) \times 2$	3.090 (6)	$\mathrm{S}(15) \times 2$	3.058 (2)
M(2)-S(2)	$2 \cdot 659$ (8)	$M(11)-S(11)$	$2 \cdot 468$ (8)
$\mathrm{S}(3) \times 2$	$2 \cdot 869$ (6)	$\mathrm{S}(14) \times 2$	$2 \cdot 817$ (6)
$\mathrm{S}(2) \times 2$	$2 \cdot 880$ (6)	$\mathrm{S}(15) \times 2$	$2 \cdot 907$ (7)
M(3)-S(3)	$2 \cdot 651$ (8)	$M(12)-S(12)$	$2 \cdot 609$ (7)
$\mathrm{S}(1) \times 2$	2.744 (5)	$\mathrm{S}(13) \times 2$	$2 \cdot 656$ (6)
$\mathrm{S}(2) \times 2$	3.059 (6)	$\mathrm{S}(14) \times 2$	$3 \cdot 230$ (6)
		$M(13)-S(13)$	$3 \cdot 130$ (9)
		$\mathrm{S}(12) \times 2$	2.920 (5)
		S(16)	2.965 (8)
		$\mathrm{S}(10) \times 2$	$3 \cdot 186$ (6)
		$\mathrm{S}(13) \times 2$	3-293 (7)
		$M(14)-S(14)$	2.749 (8)
		$\mathrm{S}(11) \times 2$	2.954 (5)
		$\mathrm{S}(12) \times 2$	2.979 (5)
		S(1)	3.236 (7)
		S(16)	3.322 (8)
		$M(15)-S(15)$	2.877 (9)
		$\mathrm{S}(10) \times 2$	2.964 (5)
		$\mathrm{S}(11) \times 2$	3.046 (5)
		S(4) $\times 2$	3.182 (7)

In the crystal, however, the Pb atoms are not found only in the middle of the ribbons. The ribbons stack face-to-face with a narrow ribbon between each wide one. The cation sites where parallel ribbons face each other mostly contain five-coordinated antimony. The cation sites on the faces that connect to the edges of other ribbons have higher coordination numbers and are occupied by lead. All the cation positions in the narrow ribbon have mixed occupancy, while there is only one such site in the wide ribbon.

Born \& Hellner (1960) used $\frac{1}{2}\left(f_{\mathrm{Pb}}+f_{\mathrm{Sb}}\right)$ scattering factors for the mixed-occupancy sites* while Petrova

[^1]et al. (1978) refined the occupancies for four mixedoccupancy sites obtaining the occupation numbers shown in column 3 of Table 1. The previous results are in general agreement with ours but we have refined anisotropic atomic displacement parameters

Fig. 1. The unit cell of boulangerite projected down [001]. In order of decreasing size, the circles denote S, Pb, mixed sites and Sb . Atoms at $z=0.25$ and $z=0.75$ are indicated by open and full circles respectively.

Fig. 2. Four unit cells of the crystal structure of boulangerite projected down [001] with the wide and narrow ribbons indicated by coarse and fine ruling. Conventions for indicating the atoms are the same as in Fig. 1.
and obtained a lower agreement index. The resulting interatomic distances are sufficiently accurate to allow the occupation numbers to be reliably determined using the bond-valence method.

In their isotropic determination, Born \& Hellner (1960) split the $\mathrm{Sb}(11)$ atom in the $x y$ plane. We used an unsplit atom but find that the atomic displacement parameter U_{11} is enhanced $\left(0.062 \AA^{2}\right)$. There seems to be no reason to believe that this atom is statically disordered.

We are indebted to R. Faggiani for help in the data collection and the Natural Sciences and Engineering Research Council of Canada for an operating grant.

References

Bayliss, P. \& Nowacki, W. (1972). Z. Kristallogr. 135, 308-315. Berry, L. G. (1940). Univ. Toronto Stud. Geol. Ser. 44, 5-19. Born, L. \& Hellner, E. (1960). Am. Mineral. 45, 1266-1271.
International Tables for X-ray Crystallography (1974). Vol. IV, Tables 2.2B and 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers.)
Palache, C. H. \& Berman, M. (1942). Am. Mineral. 27, 552-556.
Petrova, I. V., Kuznetzov, E. L., Belokoneva, A. M., Simonov, E. A., Pobedimskaya, E. A. \& Belov, N. V. (1978). Dokl. Akad. Nauk SSSR, 242, 337-340.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). $S H E L X S 86$. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
Skowron, A. \& Brown, I. D. (1990a). Acta Cryst. C46, 527-531.
Skowron, A. \& Brown, I. D. (1990b). Acta Cryst. C46, 534-536.

Acta Cryst. (1990). C46, 534-536

Structure of $\mathbf{P b}_{\mathbf{2}} \mathbf{S b}_{\mathbf{2}} \mathbf{S}_{\mathbf{5}}$

By A. Skowron and I. D. Brown
Institute for Materials Research, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4M1

(Received 13 April 1989; accepted 11 July 1989)

Abstract

M_{r}=818 \cdot 2\), orthorhombic, Pbnm, $a=$ 11.355 (4),$\quad b=19.783$ (8), $\quad c=4.042$ (1) $\AA, \quad V=$ $908 \AA^{3}, Z=4, D_{x}=5.95 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \quad \mu=421.3 \mathrm{~cm}^{-1}, \quad F(000)=1384$, room temperature, $R=0.071, w R=0.063$ for 931 independent reflections. The crystal was prepared by annealing at 860 K in the presence of I_{2} in vacuumsealed ampoules. The structure proposed by Smith \& Hyde [Acta Cryst. (1983), C39, 1498-1502] is confirmed. The distribution of $\mathrm{Sb} / \mathrm{Pb}$ over the atomic positions was determined by site-occupancy refinement and, independently, by bond-valence analysis.

Introduction. $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{~S}_{5}$ was first synthetized by Wang (1973). He reported the cell $a=19 \cdot 80, b=11 \cdot 40, c=$ $4.04 \AA$ and proposed the space group $D_{2 h}^{16}$. Smith \& Hyde (1983) obtained the lattice parameters $a=$ 19.808, $b=4.042, c=11.353 \AA$ for $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{~S}_{5}$ using powder X-ray diffraction and they proposed a structure derived from that of the Cu -containing meneghinite, $\mathrm{CuPb}_{13} \mathrm{Sb}_{7} \mathrm{~S}_{24}$ (Euler \& Hellner, 1960) in space group Pnma.

Experimental. Single crystals of $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{~S}_{5}$ were found in the same preparation as synthetic boulangerite (Skowron \& Brown, 1990b). A needle-shaped crystal 0108-2701/90/040534-03803.00
of $\mathrm{Pb}_{2} \mathrm{Sb}_{2} \mathrm{~S}_{5}, 0.2 \times 0.3 \times 0.6 \mathrm{~mm}$, which was found in the sample that initially contained $67 \mathrm{~mol} \%$ of PbS , was mounted with the needle axis along the X-ray goniometer axis.
The unit-cell parameters were refined from 15 well centered reflections in the range $20<2 \theta<47^{\circ}$ measured on a Syntex $P 2_{1}$ diffractometer using graphitemonochromated Mo $K \alpha$ radiation. Intensities of 1750 reflections were measured in the range $2 \theta<50^{\circ}$ and $0 \leq h \leq 13,0 \leq k \leq 23,-4 \leq l \leq 4$ with a $\theta / 2 \theta$ scan. Two standard reflections, 310 and $\overline{2} 31$, measured every 50 reflections, varied by 1.7%. The systematic absences, $0 k l: k=2 n+1 ; h 0 l: h+l=2 n$ +1 , found on precession photographs indicate the space groups Pbnm or $\operatorname{Pbn} 2_{1}$. The former was chosen and led to a satisfactory refinement. The absorption correction was based on ψ scans of 20 reflections (maximum correction 1.65 for the intensity of the 082 reflection). The intensities were corrected for Lorentz and polarization effects. Equivalent reflections were averaged ($R_{\text {int }}=0.037$ before the absorption correction, $R_{\text {int }}=0.031$ after) to give 931 unique reflections.
The initial atomic positions, found by direct methods using SHELXS86 (Sheldrick, 1986), were refined using SHELX76 (Sheldrick, 1976) by fullmatrix least squares (on F) with anisotropic atomic © 1990 International Union of Crystallography

[^0]: © 1990 International Union of Crystallography

[^1]: * The formula resulting from the Born \& Hellner (1960) assignment does not correspond to an electrically neutral crystal.

